『銀河進化論』正誤表 (April 5, 2011)

該当箇所	誤 正	備考
p.32、脚注 32	訳100 万個約100 万個	
p.37、 🛛 2-1		
	$\begin{bmatrix} & y \\ y \\ y \\ z \\$	
	$\begin{bmatrix} 10 & -10^{25} & -10^{10} \\ -10^{10} & -10^{10} \end{bmatrix} = \begin{bmatrix} 10 & -10^{25} & -10^{10} \\ -10^{10} & -10^{10} \end{bmatrix}$	
	1 fm1 GeV 1 fm1 Ge	7
	γ 線 1 X.U [- γ 線 1 X.U [-	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V
	X線 ^{1 nm} - − ^{1 keV} X線 ^{1 nm} - − ^{1 keV}	7
	$\begin{array}{c} & & \\$	
	$\frac{-\frac{\pi}{3}}{1}$ 0.1 mm − $\frac{1}{1}$ − $\frac{-1}{1}$ $-$	
	$1 \text{ dm} = \frac{10^{10}}{1 \text{ GH}_2} = 10^{-5}$ $1 \text{ dm} = \frac{10^{10}}{1 \text{ GH}_2} = 10^{-10}$	
	1 m - 1 m -	
	电波 100 mm	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
	100 km	
	 図中の雷波の波長 '10mm', '100mm', '100m', '100m'	
p.39、2 行目	超長 距離 電波干渉計 VLBI 超長 基線 電波干渉計 VLBI	
p.46、2 行目	ROSAT 衛星 (Rontgen Satellite) ROSAT 衛星 (Röntgen Satellite)	
	$\frac{dW}{dW} = \int_{a}^{b_{\text{max}}} dW(b) \mu = 16e^2 \mu = 0$	× 1 N
p.50, IL (2-7)	$\int d\omega dV dt = n_{\rm e} n_{\rm p} 2\pi v \int_{b_{\rm min}} d\omega dv dt = \frac{1}{3c^3 m_{\rm e}^2 v} n_{\rm e} n_{\rm p} \ln \left(\frac{1}{b_{\rm min}} \right)$)
	$\left[\text{ [I]} \frac{dW}{d\omega dV dt} = n_{\rm e} n_{\rm p} 2\pi v \int_{b_{\rm min}}^{b_{\rm max}} \frac{dW(b)}{d\omega} b db = \frac{16e^6}{3c^3 m_{\rm e}^2 v} n_{\rm e} n_{\rm p} \ln\left(\frac{b_{\rm max}}{b_{\rm min}}\right)^{-1} \right]$	
p.61、4 行目	$Pa\alpha$ $P\alpha$	
p.68、8 行目	真のサイズ <u>がを</u> D とする 真のサイズ <u>を</u> D とする	
p.75、16 行目	セル <u>ジ</u> ック則 セル <u>シ</u> ック則	
p.77、下から 10 行目	ー群に分け <u>た</u> られた . ー群に分けられた .	
p.78、3 行目	負の整数 <u>をとした</u> 形態型指数 負の整数 <u>を与えた</u> 形態型指数	
p.81、式 (3-24)	$b_n = 0.868n - 0.142 \qquad b_n = 1.999n - 0.327$	
p.83、4 行目、5 行目	単 軸方向 短 軸方向	
p.87、図 3-10、説明	単 軸方向 短 軸方向	
p.87、図 3-10、y-軸ラベル	$v_{\min}^2/(v_{\min}^2 + v_{\max}^2)^{1/2}$ $v_{\min}/(v_{\min}^2 + v_{\max}^2)^{1/2}$	

該当箇所	誤	Œ	1
p.89、図 3-12、縦軸ラベル	バルジ 円盤比	バルジ 円盤比	
p.90、図 3-13、説明	バルジ・円盤光度比	バルジ光度 円盤光度比	
p.93、式 (3-38)	$A = \frac{1}{2} \frac{\sum I_{ij} - I_{ij}^{R} - b}{2}$	$A = \frac{1}{2} \frac{\sum I_{ij} - I_{ij}^{R} - b}{2}$	
	$\frac{1}{2} \sum I_{ij} I_{ij}$	$\frac{1}{2} \sum_{ij} I_{ij}$	
p.95、図 3-18、説明	そして <u>B</u> は平淯化した画像でめる. 週~かて掘座のた	そして <u>1°</u> は平淯化した画像である。	
p.99, 1.2		│	
p.112、IL(3-55)	$ (i \not z) SFR(M_{\odot} yr^{-1}) = 4.5 \times 10^{-11} L_{FIR}(erg$	gs + Hz +)	
	(III) $SFR(M_{\odot} \text{yr}^{-1}) = 1.4 \times 10^{-42} L_{[OII]}(\text{er})$		I
p.126、脚注 16、2 行目	粒子数は $n=n_{ m p}+n_{ m e}=2n_{ m p}$ でめる .	粒子数は $n=n_{ m p}+n_{ m e}=2n_{ m H}$ じめる .	
p.140、トから4行目			
p.143、4 行目	ダリー・ノイッシャー関係同様,	タリー ノイツジャー関係同様 ,	
p.144、式 (3-103)	$\frac{D_n}{ m kpc} = 2.05 \left(\frac{\sigma_0}{100 m km/s} \right)$	$\frac{D_n}{\text{kpc}} = 2.05 \left(\frac{\sigma}{100 \text{ km s}^{-1}}\right)^{1.03}$	
p.154、8 行目	宇宙の泡構造 <u>もと</u> 呼ばれる.	宇宙の泡構造 <u>とも</u> 呼ばれる.	
p.155、図 3-62、説明	後退速度が $0 < v < 1500 m ~km~s^{-1}$	後退速度が $0 < v < 15000 m ~km~s^{-1}$	
p.157、図 3-64	楕円銀河 SO 銀河	楕円銀河 SO 銀河	
	$1 \rightarrow 0$	k_{eff}	
p.167、下から 5 行目	ハーバード・スミソニアン・天体物理 <u>観測所</u>	ハーバード・スミソニアン天体物理学 <u>センター</u>	
p.167、下から 3 行目	ラス・カンパナス天文台赤方偏移サーベイ	ラス・カンパナス赤方偏移サーベイ	
p.170、3行目	【誤】深撮像多天体分光器 ($\underline{ ext{Deep}}$ $\operatorname{Imaging}$ Mu	ılti-Object Spectrograph, DEIMOS)	
	【正】深撮像多天体分光器 ($\overline{ ext{DEep}}$ $\operatorname{Imaging}$ M	ulti-Object Spectrograph, DEIMOS)	
p.170、4 行目	【誤】 DEEP2 (<u>DEEP</u> Extragalactic Evolution	onary Probe 2)	
	[E] DEEP2 (<u>Deep</u> Extragalactic Evolution	nary Probe 2)	
p.170、下から 4 行目	地上望遠鏡 <u>が</u> 用いて行われた	地上望遠鏡 を 用いて行われた	
p.172、14 行目	【誤】ハッブルディープフィールド・サウス(Hubble Deep Field South, $HDF-\underline{D}$	
	【正】ハッブルディープフィールド・サウス(Hubble Deep Field South, HDF- <u>S</u>	
p.174、下から 11 行目	平方度という広い天域を観測した.	2 平方度という広い天域を観測した。	
p.176、8 行目	z = 3.4	z = 3.7	
p.179、式 (4-1) の上	【誤】観測されたフラックスを $F_{ m obs,i}$ とすると	:	
	【正】観測されたフラックスを $F_{ m obs,i}$, 誤差の	大きさを σ_i とすると	
p.179、式 (4-3)	$s = \frac{\sum_{i=1}^{N} f_{\text{model},i} f_{\text{obs},i} / \sigma_i^2}{\sum_{i=1}^{N} \sigma_i^2}$	$s = \frac{\sum_{i=1}^{N} F_{\text{temp},i} F_{\text{obs},i} / \sigma_i^2}{\sum_{i=1}^{N} \sigma_i^2}$	
	$\sum_{i=1}^{N} (f_{\text{model},i})^2 / \sigma_i^2$	$\sum_{i=1}^{N} (F_{\text{temp},i})^2 / \sigma_i^2$	
p.183、トから9行日 m 190 脚注 19		ハルセツティらの洞尤囲緑も	
p.189、脚注 13	KE Partriage, K. B., & Peebles, P. J. E.,	1907, 147, 808	
	LIE J Partridge, R. B., & Peebles, P. J. E.,	1907, <u>ApJ</u> , 147, 868	

該当箇所	誤	正
p.192、4 行目	⊠ 4.15	図 4-15
p.193、図 4-15 の説明	日本人により <u>で</u> 初めて発見された	日本人により初めて発見された
p.194、図 4-16 の説明	日本人により <u>で</u> 初めて発見された	日本人により初めて発見された
p.200、13 行目	まとめておこうまず JCMT の SCUBA	まとめておこう.まず JCMT の SCUBA
p.208、1 行目	z>1.4の銀河を選び出すことができる.	$z>1.4$ の $_{ extsf{theta}}$ 銀河を選び出すことができる.
p.211、2 行目	図の <u></u> 段目から 4 段目までに	図の 1 段目から 4 段目までに
p.213、7 行目	比較することができる (図 4-31).	比較することができる (図 4-30).
p.214、2 行目	$1.4 \le z \le \underline{3.5}$ の銀河が	$1.4 \leq z \leq \underline{2.5}$ の銀河が
p.220、15 行目	何らかの理由で観測されて <u>いいない</u> こと	何らかの理由で観測されて <u>いない</u> こと
p.232、図 5-7、説明文	星生成率密度の赤方偏移 <u>依存性性</u> .	星生成率密度の赤方偏移 <u>依存性</u> .
p.233、3 行目	【誤】 $z\sim 1$ までに $10^{12}M_{\odot}$ より重い銀河の数	密度は
	【正】 $z\sim 1$ までに $10^{11}M_{\odot}$ より重い銀河の数	密度は
p.245、最後の行	1/2 から 1/3	1/3 から 1/2
p.249、 🗷 5-23	赤色巨星分子	赤色巨星分枝
p.251、9 行目	ヘルツシュプ <u>リ</u> ングギャップ	ヘルツシュプ <u>ル</u> ング・ギャップ
p.251、下から 3 行目	$O + Ne + \underline{Fe}$	O + Ne + Mg
p.251、下から 2 行目	$O + Ne + \underline{Fe}$	O + Ne + Mg
p.251、下から1行目	$O + Ne + \underline{Fe}$	O + Ne + Mg
p.252、7 行目	$O + Ne + \underline{Fe}$	O + Ne + Mg
p.255、 脚注 8	http://www.cida.ve/ bruzual/bc2003	http://www.cida.ve/~bruzual/bc2003
p.257、8 行目	対応する <u>高度</u> 進化を図 5-27 に示した .	対応する <u>光度</u> 進化を図 5-27 に示した.
p.259、下から1行目	進化フェイズ	進化フェーズ
p.264、5.5.1 の2行目	早期型銀河では赤く晩期型銀河では青い.	早期型銀河では赤く、晩期型銀河では青い.
p.266、上から 2 行目	【誤】 $(u, f_{ m g}$ の説明が抜けている $)$	
	【正】ここで $f_{ m g}$ はガスの割合 (質量比) で、 $ u$	は定数である.
p.278、図 6-1 の説明	$($ 図中の \odot の説明が抜けている $)$	⊙ は太陽の組成。
p.279、3 行目	図 6-3) に [Fe/O] と [Fe/H] の関係を示した.	図 6-3 に [Fe/O] と [Fe/H] の関係を示した.
p.283、式 (6.10)	$\phi(m) \propto \begin{cases} M^{-2.45} & \text{for } M \ge 10M_{\odot} \\ M^{-3.27} & \text{for } 10M_{\odot} > M > 1M_{\odot} \end{cases}$	$\phi(m) \propto \begin{cases} m^{-2.45} & \text{for } m \ge 10M_{\odot} \\ m^{-3.27} & \text{for } 10M_{\odot} > m > 1M_{\odot} \end{cases}$
	$ M^{-1.83} \qquad \text{for } 1M_{\odot} > M \ge 0.2M_{\odot} $	$m^{-1.83}$ for $1M_{\odot} > m \ge 0.2M_{\odot}$
p.289、式 (6-23) の後	【誤】 $(m_{ m rem}$ の説明が抜けている $)$	
	【正】ここで $m_{ m rem}$ は白色矮星や中性子星のよ	うに、星が寿命を迎えたあとに
	残った天体 (remnant) の質量である.	
p.289、7行目	$\psi(m)$ は $t- au_m$ における IMF である	$\psi(t- au_m)$ は時刻 $t- au_m$ における SFR である
p.292、式 (6-43)	$\frac{dZ}{1-Z} = -\frac{dM_{\text{gas}}}{M_{\text{gas}}}$	$\frac{dZ}{1-Z} = -y \frac{dM_{\rm gas}}{M_{\rm gas}}$
p.299、6.4.1 節の 11 行目	図 6-15 <u>を</u> 見てみると	図 6-15 <u>で</u> 見てみると
p.299、下から 8 行目	両者には <u>多きな</u> 差がある.	両者には <u>大きな</u> 差がある.
p.300、図 6-15、説明	1993, A&A, 275, 101)) .	1993, A&A, 275, 101) .
p.301、3 行目		ガスの質量比 μ について解けば ,
p.304、式 (6-67)。	$\Sigma_{\rm gas}(r,0) = \Sigma_0(-r/r_{\rm d})$	$\Sigma_{\rm gas}(r,0) = \Sigma_0 \exp(-r/r_{\rm d})$
p.304、下から 2 行目	${ m SFR} \propto \Sigma^n \; (n>1)$ とすると,	${ m SFR} \propto \Sigma_{ m gas}^n \; (n>1)$ とすると ,
p.305、式 (6-71)	$Z_{\rm s} = y - \frac{\mu}{1 - \mu} Z_{\rm gas}$	$Z_{\rm s} = y - \frac{\mu}{1 - \mu} Z$

俌

該当箇所	誤	一正	備考
p.306、10 行目	大きくなるとガス げ 系から放出される	大きくなるとガス が 系から放出される	
p.307、式 (6-76)	【誤】 $\rho = 3M_{\rm G}/(4\pi r_{\rm G}^3) = 9.15 \times 10^{12} M_{\rm G}$	$M_{\odot})^{3\eta-5} { m g~cm^{-3}}$	
	(IE) $\rho = 3M_{\rm G}/(4\pi r_{\rm G}^3) = 9.15 \times 10^{-25}$	$(M_{ m G}/10^{12}M_{\odot})^{3\eta-5}{ m g~cm^{-3}}$	
p.308、式 (6-81) の上	$t_{ m GE}$	$t_{ m GW}$	
p.309、4 行目 (式 6-85 の下)	$t_{ m SF}$	$t_{ m SN}$	
p.316、下から 4 行目	$[\alpha/{ m Fe}]$	$[\alpha/\mathrm{Fe}] > 0$	
p.321、図 7-1 の説明	【誤】鎖線は $(1+z)^1$ に比例する場合,	点線は $(1+z)^{1.5}$ に比例する場合,	
	【正】鎖線は $H(z)^{-1}$ に比例する場合,	点線は $H(z)^{-1.5}$ に比例する場合 ,	
p.322、式 7-5	$r_{\rm vir} = \frac{v_{\rm vir}}{10 C H(z)}$	$r_{\rm vir} = \frac{v_{\rm vir}}{10H(z)}$	
p.324、2 行目	作られたのではなければ.	1011(2) 作られたのでなければ.	
p.324、下から 1 行目	t_s arco,	t. なので .	
p.325、3 行目	強い接近 遭遇	強い近接 遭遇	
$p = 325 = \pm (7 = 13)$	$\int \exists \mathbf{r} \cdot \mathbf{r} = \frac{1}{2} \int_{-\infty}^{\infty} \mathbf{F}_{+}(t) dt = 2Gm$		I
$p.525$, $r_{0}(1-15)$	$\int \mathbf{T} \mathbf{A} \mathbf{A} \mathbf{b} \mathbf{b} = \frac{1}{m} \int_{\infty} \mathbf{T} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b}$		
	$\left[\textbf{IE} \right] \Delta v_{\perp} = \frac{1}{m} \int \mathbf{F}_{\perp}(t) dt = \frac{2Gm}{bv}$		
-205 + (7.15)	$\int_{-\infty}^{\infty} \int_{-\infty}^{-\infty} dm \left(2Gm \right) 2-b dl$	$8\pi G^2 m^2 n t_{\rm ln} (b_{\rm max})$	
p.323, IV (1-13)	$\prod_{\mathbf{k}} \langle v_{\perp} \rangle = \int_{b_{\min}} nvt \left(\frac{bv}{bv} \right) 2\pi bdd$	$b = \frac{v}{v} \ln\left(\frac{b_{\min}}{b_{\min}}\right)$	
	$\left(\text{IE} \left(\Delta v_{\perp}^2 \right) = \int_{-\infty}^{\sigma_{\text{max}}} nvt \left(\frac{2Gm}{L} \right) 2\pi h$	$bdb = \frac{8\pi G^2 m^2 nt}{1} \ln\left(\frac{b_{\max}}{1}\right)$	
n 305 下からら行日	$J_{b_{\min}}$ (bv)	$v (b_{\min})$	1
	$\langle \Delta v_{\perp} \rangle = v$	$(\Delta v_{\perp}) = v$	
		vœR	
	-1 - q=1 - 1		
	_2		
p.331、 図 7-5	0 0.5 1 1.5 2 2.5 3 <i>R</i> / <i>R</i> _h	$R/R_{\rm h}$	
p.336、3 行目	重力ポテンシャルを ϕ	重力ポテンシャルを Φ	
p.336、式 (7-33)	【誤】 $\frac{\partial \mathbf{v}}{\partial \mathbf{v}} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla\phi - \frac{1}{\nabla}p$	'	1
	$\begin{bmatrix} \mathbf{U} \mathbf{U} & \frac{\partial t}{\partial \mathbf{v}} \\ \mathbf{U} \mathbf{U} & \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla\Phi - \frac{1}{\rho}\nabla\rho \end{bmatrix}$		
p.336、式 (7-38)	$\Phi(r, \phi, t) = \Phi_0(r, \phi, t) + \Phi_1(r, \phi, t)$	$\Phi(r,\phi,t) = \Phi_0(r) + \Phi_1(r,\phi,t)$	
p.339、7.7.1の1行目	第3章の図1-9で見たように	第1章の図 1-9 で見たように	
p.339、下から 8 行目	図 7-11 に, COSMOS (第4章参照) で	図 7-10 に, COSMOS (第4章参照) で	
p.357、9 行目	ミレニアム シュミレーション	ミレニアム シミュレーション	
p.359、 🗷 8-2	ダークマターの質量関数の進化	ダークマター ハロー の質量関数の進化	
p.359、 🗷 8-2	【誤】(図の説明が不十分)		I
	【正】誤差付きの がシミュレーションの	の結果 , 実線が Jenkins, A., et al.	
	(2001, MNRAS, 321, 372) で得望	られたフィッティング関数による予想 ,	
	点線がプレス・シェヒター理論に、	よる予想。縦の点線はダークマターハロー	
	の質量が $1.8 imes 10^{10} h^{-1} M_{\odot}$ の場	所を示している.	

該当箇所	誤	正	備考
p.360、9 行目	重力崩壊する考えると,	重力崩壊する <u>と</u> 考えると ,	
p.363、10 行目	$\gamma = -1.71 \pm 0.06$	$\gamma = 1.71 \pm 0.06$	
p.363、式 (8.8)	$N(\theta) = N_{\rm G}(1 + w(\theta))$	$N(\theta) = N_{\rm G}[1 + w(\theta)]$	
p.364, 式 (8-12)	$\frac{[1+w(\theta)]}{DD^{1/2}} \qquad $	$\left \begin{array}{c} \frac{1+w(\theta)}{DD^{1/2}} \end{array} \right $	
p.365、式 (8-20)	$ \left \textbf{[i]} g(z) = \frac{H_0}{c} \left\{ (1+z)^2 [1+\Omega_M z + z] \right\} \right\} $	$\Omega_{\Lambda}(1+z)^{-2}-1]^{1/2}$	
	$ I \equiv J g(z) = \frac{\dot{H}_0}{c} \left\{ (1+z)^2 [1+\Omega_M z + z] \right\} $	$\Omega_{\Lambda}((1+z)^{-2}-1)]^{1/2}$	
p.366、下から 2 行目	定義より $M_{ m lim}$ よりも質量が小さい	定義より $M_{ m min}$ よりも質量が小さい	
p.367、1 行目	$M > M_{ m lim}$ に対して	$M > M_{\min}$ に対して	
p.368、式 (8-24)	【誤】 $b_{g} = \frac{1}{n_{g}} \int_{M_{\text{lim}}}^{\infty} \frac{dn_{h}}{dM}(M)b_{h}(M)N_{g}(M)$	M)dM	
	$\left[\text{ [I] } b_{\rm g} = \frac{1}{n_{\rm g}} \int_{M_{\rm min}} \frac{dn_{\rm h}}{dM} (M) b_{\rm h}(M) N_{\rm g}(M) N_{\rm g}(M) N_{\rm g}(M) \right]$	(M)dM	
p.368、3 行目	$M_{ m lim}$ や M_1 を求めることができる .	$M_{ m min}$ や M_1 を求めることができる .	
p.375、下から1行目	ド・ボークルール則	ド・ヴォークルール則	
p.377、脚注 3	クェーサーとの約 10% が	クェーサーの約 10% が	
p.379、2 行目	クェーサーの出現頻度は	クェーサーの出現頻度 <u>のピーク</u> は	
p.379、section 9.1.3 の 8 行目	赤外線専門衛星	赤外線天文衛星	
p.380、 脚注 8	半値幅が数 1000 kms ⁻¹	半値幅が数 1000 km s ⁻¹	
p.384、下から 5 行目	地上の大望遠鏡に精密な星の運動の観測	地上の大望遠鏡に <u>よる</u> 精密な星の運動の観測	
p.388、10 行目	図 9-10 に示す.	図 9-11 に示す.	